Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4057, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374393

RESUMO

Rapid spread of insecticide resistance among anopheline mosquitoes threatens malaria elimination efforts, necessitating development of alternative vector control technologies. Sterile insect technique (SIT) has been successfully implemented in multiple insect pests to suppress field populations by the release of large numbers of sterile males, yet it has proven difficult to adapt to Anopheles vectors. Here we outline adaptation of a CRISPR-based genetic sterilization system to selectively ablate male sperm cells in the malaria mosquito Anopheles gambiae. We achieve robust mosaic biallelic mutagenesis of zero population growth (zpg, a gene essential for differentiation of germ cells) in F1 individuals after intercrossing a germline-expressing Cas9 transgenic line to a line expressing zpg-targeting gRNAs. Approximately 95% of mutagenized males display complete genetic sterilization, and cause similarly high levels of infertility in their female mates. Using a fluorescence reporter that allows detection of the germline leads to a 100% accurate selection of spermless males, improving the system. These males cause a striking reduction in mosquito population size when released at field-like frequencies in competition cages against wild type males. These findings demonstrate that such a genetic system could be adopted for SIT against important malaria vectors.


Assuntos
Anopheles , Infertilidade Masculina , Malária , Humanos , Animais , Masculino , Feminino , Anopheles/genética , Controle de Mosquitos/métodos , Mosquitos Vetores/genética , Sêmen , RNA Guia de Sistemas CRISPR-Cas , Infertilidade Masculina/genética , Mutagênese , Células Germinativas
2.
PLoS Genet ; 20(1): e1011145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38285728

RESUMO

Females from many mosquito species feed on blood to acquire nutrients for egg development. The oogenetic cycle has been characterized in the arboviral vector Aedes aegypti, where after a bloodmeal, the lipid transporter lipophorin (Lp) shuttles lipids from the midgut and fat body to the ovaries, and a yolk precursor protein, vitellogenin (Vg), is deposited into the oocyte by receptor-mediated endocytosis. Our understanding of how the roles of these two nutrient transporters are mutually coordinated is however limited in this and other mosquito species. Here, we demonstrate that in the malaria mosquito Anopheles gambiae, Lp and Vg are reciprocally regulated in a timely manner to optimize egg development and ensure fertility. Defective lipid transport via Lp knockdown triggers abortive ovarian follicle development, leading to misregulation of Vg and aberrant yolk granules. Conversely, depletion of Vg causes an upregulation of Lp in the fat body in a manner that appears to be at least partially dependent on target of rapamycin (TOR) signaling, resulting in excess lipid accumulation in the developing follicles. Embryos deposited by Vg-depleted mothers are completely inviable, and are arrested early during development, likely due to severely reduced amino acid levels and protein synthesis. Our findings demonstrate that the mutual regulation of these two nutrient transporters is essential to safeguard fertility by ensuring correct nutrient balance in the developing oocyte, and validate Vg and Lp as two potential candidates for mosquito control.


Assuntos
Aedes , Anopheles , Malária , Feminino , Animais , Anopheles/genética , Mosquitos Vetores/genética , Vitelogeninas/genética , Vitelogeninas/metabolismo , Proteínas do Ovo/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fertilidade/genética , Lipídeos , Aedes/genética , Aedes/metabolismo
3.
bioRxiv ; 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37398018

RESUMO

Females from many mosquito species feed on blood to acquire nutrients for egg development. The oogenetic cycle has been characterized in the arboviral vector Aedes aegypti, where after a bloodmeal, the lipid transporter lipophorin (Lp) shuttles lipids from the midgut and fat body to the ovaries, and a yolk precursor protein, vitellogenin (Vg), is deposited into the oocyte by receptor-mediated endocytosis. Our understanding of how the roles of these two nutrient transporters are mutually coordinated is however limited in this and other mosquito species. Here, we demonstrate that in the malaria mosquito Anopheles gambiae, Lp and Vg are reciprocally regulated in a timely manner to optimize egg development and ensure fertility. Defective lipid transport via Lp silencing triggers abortive ovarian follicle development, leading to misregulation of Vg and aberrant yolk granules. Conversely, depletion of Vg causes an upregulation of Lp in the fat body in a manner that appears to be at least partially dependent on target of rapamycin (TOR) signaling, resulting in excess lipid accumulation in the developing follicles. Embryos deposited by Vg-depleted mothers are completely infertile, and are arrested early during development, likely due to severely reduced amino acid levels and protein synthesis. Our findings demonstrate that the mutual regulation of these two nutrient transporters is essential to safeguard fertility by ensuring correct nutrient balance in the developing oocyte, and validate Vg and Lp as two potential candidates for mosquito control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...